• Question: why are there different planet?

    Asked by sean123 to Austin, Kirsty, Nike on 21 Jun 2012.
    • Photo: Nike Dattani

      Nike Dattani answered on 21 Jun 2012:

      Lots of different materials were scattered around the universe randomly, and materials that were close together clustered into plants through a process called “accretion” . There are different planets because these materials were clustered in different groups. If the matter in the universe was distributed evenly through space rather than randomly, then we would not have different planets =)

    • Photo: Kirsty Ross

      Kirsty Ross answered on 22 Jun 2012:

      I’ll mainly be discussing the creation of our solar system in my answer for you, but it is predicted to apply to most planets in the universe.

      The various planets are thought to have formed from the solar nebula, the disc-shaped cloud of gas and dust left over from the Sun’s formation. The currently accepted method by which the planets formed is known as accretion, in which the planets began as dust grains in orbit around the central protostar. Through direct contact, these grains formed into clumps up to 200 metres in diameter, which in turn collided to form larger bodies (planetesimals) of ~10 kilometres (km) in size. These gradually increased through further collisions, growing at the rate of centimetres per year over the course of the next few million years.

      The inner Solar System was too warm for volatile molecules like water and methane to condense, so the planetesimals that formed there could only form from compounds with high melting points, such as metals (like iron, nickel, and aluminium) and rocky silicates. These rocky bodies would become the terrestrial planets (Mercury, Venus, Earth, and Mars). These compounds are quite rare in the universe, comprising only 0.6% of the mass of the nebula, so the terrestrial planets could not grow very large. The terrestrial embryos grew to about 0.05 Earth masses and ceased accumulating matter about 100,000 years after the formation of the Sun; subsequent collisions and mergers between these planet-sized bodies allowed terrestrial planets to grow to their present sizes.

      When the terrestrial planets were forming, they remained immersed in a disk of gas and dust. The gas was partially supported by pressure and so did not orbit the Sun as rapidly as the planets. The resulting drag caused a transfer of angular momentum, and as a result the planets gradually migrated to new orbits. Models show that temperature variations in the disk governed this rate of migration, but the net trend was for the inner planets to migrate inward as the disk dissipated, leaving the planets in their current orbits.

      The gas giants (Jupiter, Saturn, Uranus, and Neptune) formed further out, beyond the frost line, the point between the orbits of Mars and Jupiter where the material is cool enough for volatile icy compounds to remain solid. The ices that formed the Jovian planets were more abundant than the metals and silicates that formed the terrestrial planets, allowing the Jovian planets to grow massive enough to capture hydrogen and helium, the lightest and most abundant elements. Planetesimals beyond the frost line accumulated up to four Earth masses within about 3 million years. Today, the four gas giants comprise just under 99% of all the mass orbiting the Sun. Scientist believe it is no accident that Jupiter lies just beyond the frost line. Because the frost line accumulated large amounts of water via evaporation from infalling icy material, it created a region of lower pressure that increased the speed of orbiting dust particles and halted their motion toward the Sun. In effect, the frost line acted as a barrier that caused material to accumulate rapidly at ~5 AU from the Sun. This excess material coalesced into a large embryo of about 10 Earth masses, which then began to grow rapidly by swallowing hydrogen from the surrounding disc, reaching 150 Earth masses in only another 1000 years and finally topping out at 318 Earth masses. Saturn may owe its substantially lower mass simply to having formed a few million years after Jupiter, when there was less gas available to consume.

      Stars like the young Sun had far stronger stellar winds than more stable, older stars. Uranus and Neptune are thought to have formed after Jupiter and Saturn did, when the strong solar wind had blown away much of the disc material. As a result, the planets accumulated little hydrogen and helium—not more than 1 Earth mass each. Uranus and Neptune are sometimes referred to as failed cores. Uranus and Neptune probably formed closer to the Sun—near or even between Jupiter and Saturn—and later migrated outward. After 3-10 million years, the power of the young Sun’s solar wind would have driven away the remnants of the protoplanetary disc, thereby stopping the growth of the planets.